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Abstract

In this article, we present a new approach to distinguish progressive mild cog-

nitively impaired (pMCI) subjects, who eventually develop Alzheimer's disease

(AD) from stable MCI (sMCI) subjects whose situation does not deteriorate

into AD. The proposed approach combines the discriminating capabilities of

classifiers and representation learning capacities of autoencoders into a unified

architecture, and is hence termed as joint autoencoder and classifier deep neu-

ral network (JACDNN). JACDNN employs a single classifier and multiple

autoencoders that are trained together to perform pattern classification. The

classifier in JACDNN is trained using standard approaches to distinguish

between subject from different classes using the binary cross entropy loss. The

autoencoders in JACDNN, regularizes individual layers in the network used

for classification to learn representations useful for reconstructing a given

input. The performance of JACDNN has been evaluated on several machine

learning problems pertaining to dementia, namely AD versus cognitively nor-

mal (CN) subjects, AD versus sMCI, CN versus pMCI, and pMCI versus sMCI.

These problems are targeted using two datasets. The first dataset consist of

gray matter (GM) features of subjects and the second dataset consist of combi-

nation of GM and white matter (WM) features. It is observed that better classi-

fication results are obtained when the classifier is built on GM and WM as

compared with GM features alone. Performance comparison of JACDNN with

other existing approaches has been conducted for these problems. The results

clearly indicate that JACDNN performs better than other existing approaches

for these problems.
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1 | INTRODUCTION

About 50 million people in the world are living with Alz-
heimer's disease (AD) and this number is likely to triple
by 2050.1 This poses an immense challenge for healthcare
systems around the world. At present, there is no cure for

AD, but it is possible to delay the progression of disease
upon diagnosis through early intervention.2 Clinical diag-
nosis of AD employs neuro-psychological and behavioral
assessments to identify the cognitive deficits that are
associated with AD. However, these tests are prone to
subjective interpretations and do not take into
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consideration an individual's personal and social circum-
stances, which impacts their effectiveness, especially dur-
ing the early stages of the disease.3

It is known that neuropathological effects of AD
start affecting the brain years before clinical symptoms
appear.4 These effects can be observed using noninva-
sive neuroimaging techniques like structural magnetic
resonance imaging (sMRI) and positron emission
tomography (PET) much before clinical diagnosis of
AD.5 This prompted research into clinically identifiable
stages on the pathway to AD. One of the most studied
preclinical stage of AD is mild cognitive impairment
(MCI) in which a person exhibits cognitive decline,
which is less severe than AD. Patients with MCI are far
more susceptible to develop AD than CN subjects.6–8

However, in many cases, MCI patients stay stable for
several years or advance towards a form of dementia
other than AD.9 This heterogeneity has given rise to an
interest in the development of machine learning
methods that can discriminate between MCI patients
with different prognosis. Much of the research in this
direction has focused on the problem of using MRI or
PET to distinguish between patients with progressive
MCI (pMCI) that turns into AD and those with stable
MCI (sMCI).

Many existing approaches for this problem employ a
preprocessing pipeline to identify informative features,
which are then used to build a pattern classifier that dis-
tinguishes between pMCI and sMCI subjects. The pur-
pose of preprocessing pipeline is to improve the quality
of the obtained features through application of statisti-
cal techniques like feature selection10,11 and principal
component analysis.12,13 In the work by Moradi et al.,11

the preprocessing stage involved processes for removal
of effects related to normal aging and feature selection
using regularized logistic regression. The selected fea-
tures are then used to compute a biomarker for classifi-
cation of subjects into pMCI and sMCI using low-
density separation. The preprocessing pipeline in the
work presented by Beheshti et al.10 estimates the regions
of interest (RoI) based on gray matter atrophy and then
genetic algorithm is used to select informative voxels
from each RoI. The values of selected voxels are pre-
sented to a support vector machine (SVM) for the classi-
fication task. The multiple steps in the preprocessing
pipeline render these approaches time-consuming and
hard to reproduce14 as each stage needs to be optimized
independently.

Recently, the success of deep learning in tasks like
image classification,15,16 natural language processing,17

and image set based classification has led to an increased
interest in its use for prediction of neurodegenerative

disorders like AD and autism spectrum disorder18 based
on neuroimaging data. The image set based classification
approach19,20 holds promise for the exploration of
high-dimensional neuroimaging data for differentiating
AD patients from those with normal cognitive function.
These approaches harness the richness of both spatial
and temporal information embedded within image
sequences. This strategic utilization of image sequences
contributes to an enhanced accuracy in classifying sam-
ples with neurodegenerative diseases as these
techniques21–23 automatically estimate the relevant fea-
tures for a given problem.

Deep learning approaches normally require large
number of samples for training due to the large number
of parameters associated with these networks. But, bar-
riers in acquiring standardized neuroimaging data for
large number of individuals with neurodegenerative dis-
orders make it difficult to obtain large amount of training
data. To overcome this problem, two main approaches
have been adopted in the literature. First, several
researchers have made use of stronger regularization
techniques to prevent overfitting on the training data.24

Spasov et al.24 have used deep neural networks with sepa-
rable and grouped convolutions to develop a network
with fewer learnable parameters. Second, several
approaches have used transfer learning techniques,
which involve pretraining a network on large number of
samples and then fine-tuning the pretrained network to
perform a specific classification task.25–28 In the approach
used by Suk et al.,27 a stacked autoencoders is pretrained
using data from different classes irrespective of their
labels. After pretraining, a single output layer is added to
the network for classification and weights in the whole
network are fine-tuned using back-propagation. Oh
et al.26 proposed a convolutional autoencoder to learn
representations for distinguishing between AD and CN
subjects and then used the same network for pMCI ver-
sus sMCI classification. In a similar approach, Wee
et al.28 trained a graph-convolutional neural network
using samples of different classes from ADNI-2 cohort
and then used this pretrained network to classify subjects
from ADNI-1 cohort and an Asian cohort.

Most transfer learning approaches employ autoenco-
ders for pretraining, which utilize an objective function
that involves reconstructing the network input. It has
been argued that transfer learning approaches provide
the network with a better starting point27 prior to
fine-tuning the network parameters for a particular clas-
sification task. But, the lack of a reconstruction-related
objective during fine-tuning may allow the network to
drift away from the starting point, thereby reducing the
network to a simple feedforward classification network.
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In this article, we developed a novel network architec-
ture, termed as joint autoencoder and classifier deep neu-
ral network (JACDNN), that together uses a classification
and reconstruction objective to impose a stronger regu-
larization and force the network to learn representations
suitable for classification.

JACDNN employs a network architecture that con-
sists of a single classification sub-network and multiple
reconstruction sub-networks. The classification sub-net-
work is a feedforward network that consists of multiple
convolutional layers. The final layer in the classification
sub-network consists of as many neurons as the number
of classes and is used to determine the predicted class
for a given input. Each convolution layer in the classifi-
cation sub-network is also connected to multiple convo-
lutional transpose layers, which form a single
reconstruction sub-network associated with a particular
convolutional layer. The output of each reconstruction
sub-network has the same shape as the network input.
During training, JACDNN is simultaneously trained to
achieve high classification performance based on the
output of the classification sub-network and high recon-
struction performance based on the outputs of all recon-
struction sub-networks.

The performance of JACDNN has been evaluated
using data from Alzheimer's Disease Neuroimaging Ini-
tiative (ADNI) on four different classification problems
involving AD and pMCI subjects. The study is conducted
on two different datasets. First dataset comprises of fea-
tures extracted from gray matter (GM) images of the sub-
jects and the second dataset comprises of the features
extracted from GM and white matter (WM) images of the
subjects. The results of performance evaluation have
been compared with the performance of recently pro-
posed approaches for all of these problems. It can be
clearly observed that JACDNN performs better than
existing approaches for all of the problems. Specifically,
the pMCI versus sMCI problem achieved 75.62% accu-
racy, 72.15% recall, and 71.44% precision. Similarly, for
classification of AD versus CN 91.08% accuracy, 92.98%
recall and 90.03% precision are obtained. For AD versus
sMCI, 82.17% accuracy, 73.72% recall, and 75.31% preci-
sion and for CN versus pMCI, 81.93% accuracy, 76.17%
recall, and 79.35% precision are achieved.

The rest of the article is organized into following sec-
tions: Section 2 describes the details of the dataset and
data-augmentation techniques used in this study.
Section 3 presents the architecture of JACDNN and its
training procedure. Section 4 presents the results of per-
formance comparison between JACDNN and other exist-
ing approaches. Section 5 summarizes the conclusions
from this study.

2 | MATERIALS

2.1 | Participants and data

All data used in this work is obtained from the database
for Alzheimer's Disease Neuroimaging Initiative (ADNI)
(http://adni.loni.usc.edu). Only T1-weighted sMRI
images for baseline assessment of all subjects are used in
this study. This includes records for 580 male subjects
and 464 female subjects. In total, there are 321 AD sub-
jects, 324 CN subjects, 228 pMCI subjects and 171 sMCI
subjects with ages between 55 and 91 years. Table 1 pro-
vides details about demographics, neuro-psychological
testing, Mini-Mental State Examination (MMSE), Geriat-
ric Depression Scale (GDS), and ApoE genotyping testing
for all subjects in the four classes. All T1 weighted sMRI
images were subjected to standard preprocessing steps
decided by ADNI29 to remove artifacts that occurred dur-
ing the image acquisition process. These steps involve
sequentially applying adjustments of 3D gradwrap correc-
tion, B1 nonuniformity correction, and N3 bias field
correction.

2.2 | Data preprocessing

All T1 weighted sMRI images are preprocessed using Sta-
tistical Parametric Mapping v12 (SPM 12) toolbox. First,
the unified segmentation algorithm30 is used to estimate
tissue probability maps pertaining to GM, WM, and Cere-
broSpinal Fluid (CSF) tissue in the sMRI images. Only
preprocessed images pertaining to GM and WM regions
are used for developing the models presented in this arti-
cle. This unified segmentation algorithm performs seg-
mentation, bias correction, and normalization
simultaneously. For the purpose of segmentation,
the algorithm conducts volumetric comparison between
the sMRI image of a given subject and a reference tem-
plate to estimate GM, WM, and CSF tissue probability
maps. This procedure also allows removal of artifacts like
skull, scalp, and air. These tissue probability maps are
bias corrected for removal of nonuniform intensities. The
bias-corrected images are normalized with respect to the
International Consortium for Brain Mapping (ICBM)
templates. Next, DARTEL toolbox31 is used to estimate a
local template and register all images to this template.
The local template is generated by an iterative process
that involves averaging across all segmented images to
compute an average image and then warping all images
according to this average image. All images are manually
checked and corrected for registration defects and misa-
lignment. The registered images are normalized to the
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Montreal Neurological Institute (MNI) template and
smoothed using a 10 mm full width half maximum iso-
tropic Gaussian kernel. In the final preprocessing step,
images are modulated using the deformation fields of
their own Jacobian determinants. To reduce the dimen-
sionality of the preprocessed images, voxel size is down-
sampled to a resolution of 3 mm, resulting in images with
a size of 61 � 73 � 61 voxels.

2.3 | Data augmentation

Large number of parameters in a deep neural network
necessitate the need for a large number of training
samples. For this purpose, data augmentation tech-
niques are used with preprocessed images pertaining to
GM and WM tissues in the brain. An established
approach used for augmentation of brain images is to
flip its left and right side across the central axis. This
doubles the number of samples available for training.
In this paper, this technique is used separately for both
GM and WM images. A single sample for the network
is obtained by concatenating images corresponding to
GM and WM tissues for a single subject along the
channel axis. Different combinations of the original
and flipped images of both tissues are used to generate
four different training samples for a given subject.
These include samples obtained by concatenating origi-
nal GM and original WM images, original GM and
flipped WM images, flipped GM and original WM
images, flipped GM and flipped WM images. This
results in a fivefold increase in the number of training
samples. After this, training dataset consists of 1125,
1135, 800, and 600 samples from AD, CN, pMCI, and
sMCI classes. It may be noted that the dataset is
divided into training and testing sets by a ratio of 70:30
and data augmentation is only used for training sam-
ples. The samples obtained after flipping the tissue

maps are further augmented by randomly rotating the
two tissue maps by (±)10 degrees.

3 | JOINT AUTOENCODER AND
CLASSIFIER DEEP NEURAL
NETWORK

In this section, the architecture and the training proce-
dure of JACDNN are provided.

3.1 | Architecture

Figure 1 shows the architecture of the JACDNN. The
input layer is used to present samples x1,y1ð Þ,…, xi,yið Þ,…
to the network where xi is the preprocessed MRI data
and yi � 0,1½ � is the associated class. Each input sample
has a shape of h�w� c. Here, h and w represent the
height and width of the input sample along the sagittal
plane. Similarly, c correspond to the channels of the
input MRI image along coronal plane.

The network consists of a single classification sub-
network and multiple reconstruction sub-networks
(Figure 1). The output of the classification sub-network is
used to determine the predicted class and the output of
the reconstruction sub-network is used to reconstruct a
given input sample. All sub-networks comprise of three
types of layers, namely, three-dimensional convolution
layer, three-dimensional convolution transpose layer,
and Gaussian noise layer. The functionality and the pur-
pose of each of these layers are described below.

3.1.1 | 3-D convolution layer

The sub-network for classification consists of three 3-D
convolution layers followed by a single fully connected

TABLE 1 Demographic, neuro-

psychological, and genotype details of

the participants. In the table, age and

education of participants are specified

in years and weight of participants is

specified in kilograms.

Characteristics AD CN pMCI sMCI

Total subjects 321 324 228 171

Age 75.23 (±7.8) 75.35 (±5.49) 73.91 (±7.15) 73.75 (±7.33)

Weight 73.11 (±14.70) 76.05 (±15.21) 75.25 (±14.59) 77.36 (±13.01)

Gender (M/F) 174/147 165/159 132/96 109/62

Education 15 (±2.9) 16.3 (±2.7) 15.75 (±2.81) 15.69 (±2.91)

CDR score 0.75 (±0.24) 0 (±0) 0.50 (±0.03) 0.49 (±0.07)

GDS score 1.655 (±1.42) 0.83 (±1.15) 1.65 (±1.34) 1.65 (±1.47)

MMSE score 23.29 (±2.04) 29.13 (±0.99) 26.62 (±1.70) 27.85 (±1.63)

ApoE4 Score1 3.13 (±0.47) 2.88 (±0.41) 3.10 (±0.46) 2.94 (±0.37)

ApoE4 Score2 3.66 (±0.47) 3.26 (±0.45) 3.69 (±0.45) 3.38 (±0.48)
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layer with two neurons whose responses are used to
determine the predicted class for a given input sample. A
3-D convolution layer applies convolution across all three
dimensions of the input. The output (hl) of the lth convo-
lution layer is obtained by convolving multiple filters
with the output of the previous layer. The use of multiple
filters allows extraction of multiple feature maps that
may be useful for discriminating between the input sam-
ples from different classes. Each feature map is a 3-D ten-
sor that is obtained by applying the convolution
operation to the output of the previous layer using a sin-
gle filter. The kth feature map (hlk) in the lth convolution
layer is given by

hlk ¼ f wl
k �hl�1þblk

� �
, k � 1,…Kl½ �: ð1Þ

where “*” represents the convolution operation. wl
k and

blk represent the weights and biases associated with the
kth filter of the lth convolution layer. Kl is the number of
filters used in lth layer and f is the activation function,
which is chosen to be rectified linear unit (ReLU) in this
article. Based on the estimated feature maps, the output

of the convolution layer is a four-dimensional tensor
given by

hl ¼ hl1,…,h
l
k…,h

l
Kl

h i
ð2Þ

Each 3D convolution layer of network shown in
Figure 1 consists of kernel size 3 and stride 2. The first,
second, and third convolution layers employ 16, 32, and
64 filters, respectively.

3.1.2 | 3-D convolution transpose layer

Each convolution layer in the network has an associated
reconstruction sub-network (Figure 1). These sub-
networks in JACDNN are trained to reconstruct the cur-
rent input xið Þ for the network based on the feature map
of the lth convolution layer. In each of these sub-
networks, a given convolution layer is connected to mul-
tiple 3-D convolution transpose layers, which are used to
upsample the output of the particular convolution layer.
The parameters of these convolution transpose layers are

FIGURE 1 Architecture of

JACDNN showing classification

sub-network and reconstruction

sub-networks.
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chosen such that the output (bxli) of the last layer in the lth

reconstruction sub-network has the same dimensions as
that of the input sample. A convolution transpose layer
also applies a convolution operation to its input. Thus, its
output is determined using Equation 2.

As shown in Figure 1, the first reconstruction sub-
network consists of single 3D convolution transpose
layers employing only one filter. The second reconstruc-
tion sub-network consist of two 3D convolution transpose
layers composed of 16 and one filter, respectively. The
third reconstruction sub-network consist of three 3D con-
volution transpose layers composed of 16, 16, and 1 filter,
respectively. Each convolution transpose layer employs
kernel size 3 and stride 2.

3.1.3 | Gaussian noise layer

Each convolution layer in the classification sub-network
is followed by a Gaussian noise (GN) layer. A GN layer
adds a random noise sampled from the normal distribu-
tion N � 0,σ½ � with a mean of zero and a standard devia-
tion of σ to the output of a convolution layer.32 For all
results reported in this article, a value of 0.01 is used for
σ. This augments the input data used for training the net-
work and helps in avoiding overfitting. Note that all GN
layers are only used during training.

3.2 | Objective function

The objective function for JACDNN constitutes two kinds
of losses, namely a classification loss and a reconstruction
loss. The classification loss (Lc) employs binary cross
entropy to improve the classification accuracy of the net-
work and is given by

Lc ¼
Xn
i¼1

yi logbyiþ 1� yið Þ log 1�byið Þ ð3Þ

where byi denotes the output of the classification network
for the ith input sample.

The reconstruction loss is used to generate better
reconstructions of a given input based on all the recon-
struction sub-networks and utilizes mean squared error
to observe the difference between input image xi and
reconstructed image bxi. The reconstruction loss (Lr) asso-
ciated with the lth sub-network in JACDNN is given by

Lr ¼ 1
n

Xn
i¼1

log xi�bxið Þ2 ð4Þ

Based on the loss functions described in Equations (3)
and (4), the total loss ℒð Þ for JACDNN is given by

ℒ¼Lcþβ
Xl

i¼1

Lrlð Þ
 !

ð5Þ

where β is termed as the reconstruction coefficient. A
high value of β forces the reconstruction sub-networks in
JACDNN to generate better reconstructions of a given
input, which results in strong regularization and may
lead to lower classification performance. A lower value of
β results in weak regularization due to the reconstruction
objective in which case JACDNN behaves like a simple
deep neural network for classification. In addition, L1
(Lasso) and L2 (Ridge) regularization is employed in each
convolution layer of the network. The coefficients for
both L1 and L2 regularization is set to 0.01 for all layers.
JACDNN is trained to minimize the objective function in
Equation 5 using stochastic gradient descent.

4 | RESULTS AND DISCUSSION

In this section, the performance of JACDNN is evaluated
using the preprocessed GM and WM features from the
ADNI dataset for four different classification problems.
These problems include AD versus CN, pMCI versus
sMCI, AD versus sMCI, and CN versus pMCI. The prob-
lem of AD versus CN involves classification of subjects
into AD patients and cognitively normal individuals.
pMCI versus sMCI problem focuses on distinguishing
between patients with progressive MCI that can deterio-
rate into AD and subjects with a stable form of MCI. The
problem of AD versus sMCI involves discriminating
between subjects with AD and a stable form of MCI. The
CN versus pMCI problem focuses on the task of discrimi-
nating between cognitively normal subjects and patients
with progressive MCI that can potentially turn into
AD. The performance of the network on these experi-
ments have been calculated using metrics of accuracy
ηað Þ, recall ηrð Þ, precision ηp

� �
, and specificity ηsð Þ. Accu-

racy is defined as the percentage of samples that are cor-
rectly classified by the network, given by

ηa ¼
TPþTN

Total number of samples
ð6Þ

where TP and TN stand for true positive and true nega-
tive samples. TP and TN represent the number of respec-
tive AD or pMCI and CN or sMCI subjects that are
correctly classified by the network. Recall is defined as
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the percentage of the total number of subjects with pMCI
or AD that are correctly classified by the network,
given by

ηr ¼
TP

TPþFN
ð7Þ

where FN stands for false negative samples. It denotes
the number of pMCI or AD subjects that are misclassified
by the network. Precision is defined as the percentage of
actual pMCI or AD subjects among all subjects classified
as pMCI or AD, respectively, and is given by

ηp ¼
TP

TPþFP
ð8Þ

where FP stands for false positive samples. It denotes the
number of CN or sMCI subjects that are incorrectly clas-
sified as AD or pMCI. Specificity is defined as the per-
centage of the total number of subjects with CN or sMCI
that are correctly classified by the network, given by

ηs ¼
TN

TNþFP
ð9Þ

All experiments have been conducted using Python
3.6.9 and Tensorflow 2.0 in a Google Colab notebook
with GPUs having 25 GB of memory. The results pre-
sented in this section have been obtained using fivefold
cross validation. Each network presented here has been
trained for 70 epochs with a batch size of 5. A learning
rate of 0.01 with no momentum is used for stochastic gra-
dient descent.

4.1 | Parametric study for Gaussian
noise layer

In this section, a study is conducted to understand the
impact of GN on the classification performance of
JACDNN. Table 2 shows the performance results for net-
works with and without GN for classification of AD and
CN subjects. It can be clearly observed that the network
with GN performs better than the network without

GN. The accuracy of the network is improved by approxi-
mately 2% while the sensitivity of the network is improved
by more than 6%. The improvement in sensitivity indicates
the better generalization of network on test samples. There-
fore, it is observed that JACDNN with GN layer provides a
superior performance with subjects with the disease as com-
pared with JACDNN without GN layer.

4.2 | Parametric study for
reconstruction loss

In this section, a study is conducted to understand the
impact of reconstruction coefficient β on the classifica-
tion performance of JACDNN. For this purpose, the per-
formance of the network is observed with reconstruction
loss and without reconstruction loss for classification of
AD and CN subjects, as shown in Table 3. It can be
clearly observed that the network with reconstruction
loss performs better than the network without recon-
struction loss. The accuracy of the classifier is improved
by 4.5%, with regularization provided by reconstruction
coefficient β, with approximately 9% improvement in the
sensitivity of the network. Similar to other forms of regu-
larization, β is set to a low value of 0.1.

It may be noted that for low values of β, JACDNN
behaves like a feedforward neural network trained to per-
form classification. For high values of β, JACDNN
focuses only on generating accurate reconstructions of
the input samples based on each of the reconstruction
sub-networks, thereby resulting in lower classification
performance. Figure 2 shows the reconstructions
obtained from each of the sub-networks in JACDNN
trained for an AD subject. It can be observed that recon-
structions obtained using earlier convolution layers are
closer to the input MRI than the reconstructions obtained
using deeper layers in the network. This is due to the fact
that β determines the strength of regularization provided
by the reconstruction loss, as shown in Equation 5. Due
to this, representations associated with deeper layers in
the network are less suitable for reconstruction and are
more suitable for classification. This results in less effec-
tive reconstructions based on deeper layers in the net-
work. The value of β is fixed at 0.1 for all experiments.

TABLE 2 Parametric study for Gaussian noise layer for AD

and CN classification.

Study

Accuracy Recall Precision

(%) (%) (%)

JACDNN without GN 89.11 85.56 92.22

JACDNN with GN 91.08 92.08 90.03

TABLE 3 Parametric study for reconstruction loss for AD and

CN classification.

Study

Accuracy Recall Precision

(%) (%) (%)

JACDNN without β 86.52 83.50 89.01

JACDNN with β 91.08 92.08 90.03
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4.3 | Performance comparison using GM
and WM features

In this section, the performance of JACDNN is evaluated
for the four classification problems using two types of
datasets obtained from preprocessed sMRI images. The
first dataset includes only those features that are obtained
from GM regions in the brain. The second dataset
includes features that are obtained from both GM and
WM regions in the brain, and hence will be denoted by
GM + WM. Table 4 shows the results of performance

evaluation of the proposed network for the four classifi-
cation problems using two types of datasets. The table
provides average and standard deviation for accuracy,
recall, and precision across fivefold cross validation.

For the problem of AD versus CN, the accuracy of the
network trained using GM + WM features is 7% better
than the network trained using only GM features. For the
classification problems involving pMCI subjects,
the accuracy of the networks trained using GM + WM
features is 3%–4% better than the networks that utilized
only GM features. Similarly, the accuracy of the networks

FIGURE 2 Output images

obtained from each

reconstruction sub-network for

subject of AD.

TABLE 4 Classification results of all the experiments.

AD versus CN pMCI versus sMCI AD versus sMCI CN versus pMCI

GM features

Accuracy 84.76 (±1.52) 72.77 (±1.8) 77.68 (±1.57) 77.69 (±1.59)

Recall 84.94 (±3.1) 63.13 (±6.9) 66.27 (±2.88) 68.23 (±4.79)

Precision 84.69 (±2.34) 70.73 (±3.6) 68.51 (±2.77) 75.60 (±3.59)

Specificity 84.55 (±3.16) 79.99 (±5.06) 83.74 (±2.14) 82.98 (±2.77)

GM + WM features

Accuracy 91.08 (±0.38) 75.62 (±0.75) 82.17 (±0.79) 81.93 (±0.59)

Recall 92.98 (±2.63) 72.15 (±5.17) 73.72 (±7.70) 76.17 (±4.3)

Precision 90.03 (±1.04) 71.44 (±1.62) 75.31 (±4.25) 79.35 (±1.95)

Specificity 88.84 (±2.71) 78.23 (±2.99) 86.65 (±4.90) 85.97 (±2.49)
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trained using GM + WM features is 5% better than the
networks that employed only GM features for the prob-
lem of AD versus sMCI.

Using GM and WM features resulted in an improve-
ment of 6%–9% in recall compared with using GM features
alone for the four classification problems. For the problems
of AD versus CN and pMCI versus sMCI, using GM + WM
features allowed JACDNN to achieve improvements of 7%–
8% and 8%–9%, respectively. Similarly, improvements of
1%–7% are observed in the precision of the classifiers that
are trained using both GM and WM features.

To statistically validate the results of performance
comparison, the performance of the networks trained
using GM + WM and GM datasets have been statistically
compared using one-way ANOVA test. For this purpose,
the null hypothesis was that accuracy of the networks
trained using GM + WM and GM features are not statis-
tically different from each other. The null hypothesis is
rejected with a p-value of 0.019, which is lower than 0.05.
Therefore, the null hypothesis was rejected with a confi-
dence interval of 95%. These results clearly show that the
classifiers built using both GM and WM features perform
better than the classifiers that utilize only GM features.

This is in line with recent clinical studies that have
highlighted a pathological relationship between atrophy
in GM and WM regions.33–35 Further, improvements in
classification performance on pMCI versus sMCI and CN
versus pMCI problems indicate that atrophy in WM
regions might start in early stages of the disease.

4.4 | Performance comparison with
recent approaches

In this section, the performance of JACDNN has been
evaluated for the four classification problems of AD ver-
sus CN, pMCI versus sMCI, AD versus sMCI, and CN
versus pMCI using preprocessed GM and WM data from
the ADNI database. The results were compared with the
performance of other recent approaches on these prob-
lems. All the approaches used for comparison have
reported performance using fivefold cross validation
except Spasov et al.24 and Behesti et al.,10 which reported
results using 10-fold cross validation. For a fair compari-
son of results in different approaches, performance based
only on sMRI data is included.

TABLE 5 Performance comparison

of JACDNN with recent approaches for

the problems of AD versus CN, pMCI

versus sMCI, AD versus sMCI, and CN

versus pMCI.

Article

Dataset size ACC SEN SPE

(Class I/Class II) (%) (%) (%)

AD versus CN

Cui and Liu36 198/229 91.33 86.87 95.20

Ganotra et al.37 137/162 89.26 85.29 92.59

Tong et al.38 198/231 89 84.9 92.6

Oh et al.26 198/230 86.60 (±3.66) 88.55 84.54

Sun et al.39 137/162 89.3 93.8 83.8

Proposed work 321/324 91.08 (±0.38) 92.98 (±2.63) 88.84 (±2.71)

pMCI versus sMCI

Spasov et al.24 181/228 72 63 81

Beheshti et al.10 71/65 75 76.92 73.23

Cui and Liu36 167/236 71.71 65.27 76.27

Tong et al.38 167/238 70.4 66.5 73.1

Oh et al.26 166/101 73.95 (±4.82) 77.46 70.71

Sun et al.39 76/134 65.4 64.2 67.6

Proposed work 228/171 75.62 (±0.75) 72.15 (±5.17) 78.23 (±2.99)

AD versus sMCI

Oh et al.26 198/101 75.06 (±3.86) 76.55 73.39

Proposed work 324/171 82.17 (±0.79) 73.72 86.65 (±4.90)

CN versus pMCI

Oh et al.26 230/166 77.35 81.03 74.07

Proposed work 324/228 81.93 (±0.59) 76.17 (±4.3) 85.97 (±2.49)

Abbreviations: ACC, Accuracy; SEN, Sensitivity; SPE, Specificity.
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Table 5 shows the results of performance comparison
for the four problems mentioned above. For the first
experiment, that is, AD versus CN, the performance of
JACDNN is compared with the performance of classifiers
employed in recent works.36,38,39 Cui et al.36 reported an
accuracy of 91.33%, which is almost equal to the pro-
posed work; however, their work is concentrated on fea-
tures extracted from longitudinal studies, which are
although tedious but can provide with additional fea-
tures. On the other hand, the proposed work is focused
on baseline studies that are comparatively accurate and
convenient to conduct and maintain. In terms of sensitiv-
ity, the performance of JACDNN is 6% higher than that
of Cui et al.36 Similarly, on comparing the performance
of JACDNN with other works, the proposed architecture
provides increased accuracy of 91.08%, which is 2%
higher than Tong et al.,38 Ganotra et al.,37 and Sun
et al.,39 and 5% higher than Oh et al.26 In terms of sensi-
tivity, the proposed work offers 92.98%, which is 7%, 8%,
and 4% higher than Ganotra et al.,37 Tong et al.38 and Oh
et al., respectively.26 Although Sun et al.39 show 1%
higher sensitivity in their results, this may be attributed
by the novel penalty introduced by them for wrong
classification.

For classification of pMCI and sMCI subjects, the per-
formance of JACDNN is compared with sMRI-based
results of various recent approaches.10,24,26,36,38,39

Beheshti et al.10 employed morphometry and SVM
accompanied by t-test to report the accuracy of 75% that
lie closest to accuracy provided in this work. However,
their work employs two independent and mutually exclu-
sive models for feature selection and classification com-
pared with single architecture proposed by this work.
Spasov et al.24 have reported an accuracy of 72% on sMRI
samples using separable and grouped convolutions. For
the same classification task Sun et al.,39 Oh et al.,26 Cui
et al.,36 and Tong et al.38 have reported accuracies of
65.4%, 73.95%, 71.71%, and 70.4%, respectively. In com-
parison with the abovementioned approaches, JACDNN
provides an accuracy of 75.62%, which is 3%, 4%, 5%, 2%,
and 10% higher than Spasov et al.,24 Cui et al.,36 Tong
et al.,38 Oh et al.,26 and Sun et al.39 Similarly, in terms of
sensitivity, JACDNN obtained 9%, 6%, 7%, and 8% higher
results than Spasov et al.,24 Cui et al.,36 Tong et al.,38 and
Sun et al.,39 respectively. Beheshti et al.10 reported higher
sensitivity than the proposed work; however, their work
is focused on extracting features from volume of interest
in GM atrophy regions. These features are ranked as per
their t-test score and used for classification. This method
may show high affinity to the subject affected with the
disease, and therefore attribute more towards sensitivity.
Additionally, Beheshti et al.10 used only seven samples
for evaluation.

The performance of JACDNN on classification of AD
versus sMCI and CN versus pMCI is compared with the
performance of convolutional autoencoder proposed by
Oh. et al.26 Their work has reported the accuracy of
75.06% for AD and sMCI classification and 77.35% for CN
and pMCI classification, respectively. The JACDNN pro-
vides improvement of 6%–7% and reports accuracy of
82.17% and 81.93% in respective cases. The joint classifier
and autoencoder approach of the JACDNN helps it in
this improvement in accuracy. In terms of sensitivity, the
performance of Oh et al.26 is 3%–5% better than the pro-
posed model. This may contribute to the fact that Oh
et al.26 employed a multistage approach, which involved
training an autoencoder and a classifier separately. The
autoencoder is used to extract representations, and then
these representations are used to train the classifier. Mul-
tistage approaches can be difficult to train as the two
models, autoencoder and classifier, are trained sepa-
rately, but the performance of the classifier strongly
depends on the quality of representations obtained from
the encoder. On the other hand, the proposed method is
a simpler approach as it involves directly training a neu-
ral network using a loss function that combines
reconstruction- and classification-related losses. Thus,
the proposed method provides a simpler training
approach with a small loss in performance.

4.4.1 | Parameter comparison with recent
approaches

In this section, a study is conducted to compare the total
parameters of neural networks reported in recent studies.
Cui and Liu36 reported a total of 273 292 parameters for
their approach, which combines convolutional and recur-
rent neural network (RNN) architectures for longitudinal
AD studies. They utilized convolutional neural networks
(CNN) to capture spatial structural features and RNNs to
extract longitudinal features from different time points.
The incorporation of this two-stage feature learning pro-
cess substantially increases the total number of parame-
ters in the network. Similarly, Oh et al.26 employed a
two-stage process for AD detection, involving a convolu-
tional autoencoder to learn encoded visual features in the
first stage, followed by a CNN for classification in the sec-
ond stage, resulting in a total of 340 000 parameters. Spa-
sov et al.24 reported the usage of 550 000 network
parameters for classification tasks, combining imaging
data with demographic, neuro-psychological, and
genetic data.

Notably, not all methods in the field are solely based
on neural networks. For instance, Tong et al.,38 Beheshti
et al.,10 Sun et al.,39 and Ganotra et al.37 have presented
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state-of-the-art methods employing machine learning
techniques such as support vector machines for classifica-
tion. Therefore, a direct comparison of parameters may
not be suitable in these cases.

Table 6 presents the number of parameters for neural
networks based methods used for comparison in this arti-
cle. The proposed method is based on a three-layer neural
network architecture, where each layer is connected to a
transpose convolution network for input reconstruction
with 162 404 network parameters. The proposed
approach distinguishes itself by not involving separate
stages for feature selection and classification and operates
as a cohesive learning-based system with automatic fea-
ture selection, eliminating the need for a multistage
pipeline.

5 | CONCLUSION

In this work, we presented an approach to combine dis-
criminating capabilities of a classifier with representation
learning capacities of autoencoders in an integrated
architecture to segregate pMCI subjects from sMCI
subjects. The JACDNN architecture consists of single
classifier sub-network with multiple autoencoder sub-
networks. Each convolution layer of the classifier is
equipped with an autoencoder, which trains to learn the
representations for reconstruction of the input of
the layer. These representations are learned by autoenco-
der while it regularizes the same layer. The classifier sub-
network and autoencoder sub-networks are trained
simultaneously on various classification problems associ-
ated with AD namely AD versus CN, pMCI versus sMCI,
AD versus sMCI, and CN versus pMCI. The performance
of the architecture is evaluated on two datasets based on
GM and combination of GM and WM. It is observed that
better classifier results are obtained on GM and WM fea-
tures as compared with GM features alone. The perfor-
mance of the JACDNN is compared with other existing
approaches, which show that the proposed work provides
better results. Furthermore, this work can be replicated
for identification and classification of other neurodegen-
erative diseases and imaging modalities.
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